Контакты

Повышающий стабилизатор напряжения (Troyka-модуль). Регулируемый понижающий преобразователь на LM2596

Китайские модули регулируемых преобразователей напряжения

Здесь представлен небольшой обзор популярных модулей понижающих, повышающих и универсальных импульсных преобразователей напряжения, с регулирокой и без. Их удобно использовать для питания портативных самодельных устройств от литиевых аккумуляторов и не только.

Регулируемый понижающий преобразователь на LM2596


Входное напряжение: 4,5 - 35 вольт, выходное - 1,25 - 35 вольт. Входное напряжение должно превышать выходное хотя бы на 1,5...3 вольта (в разных источниках указаны разные значения). Хорошо работает при выходном токе до 1,5А (заявленный - 3А), выше этого - сильно нагревается. Говорят, что на этих модулях стоят ненастоящие LM2596. Поэтому на большой нагрузке следует обеспечить отвод тепла и заменить диод Шоттки на более мощный (в даташите рекомендуют 1N5825). Если во время работы модуль издаёт шум, то следует установить отсутствующий конденсатор в цепь обратной связи, достаточно на 1 нФ. Подстроечный резистор желательно заменить на более качественный. При коротком замыкании микросхема уходит в защиту по перегреву, выключаясь на какое-то время.

Регулируемый повышающий преобразователь на XL6009


Входное напряжение: 5 - 35 вольт, выходное - до 50 вольт. Однако, диод SS34 рассчитан на 40 вольт, и превышать это значение не следует. Помимо этого, скорее всего, диод установлен перемаркированный, от чего разумно было бы не превышать выходной ток более 1,5 - 2 ампер (заявлено - 4А, но это, вероятно, по входу). Говорят, что микросхема - также ненастоящая XL6009, а нечто, работающее на вдвое меньшей частоте. Из доработок можно рекомендовать замену диода на более мощный, замену выходного конденсатора и добавление параллельно керамики на 10 мкФ. При коротком замыкании сгорает диод.

Регулируемый универсальный преобразователь на XL6019


Данный модуль отличается тем, что может работать и как понижающий, и как повышающий, что достигается применением топологии buck-boost (SEPIC). Именно поэтому он имеет два силовых дросселя. Входное напряжение: 5 - 35 вольт при токе до 4А, выходное - 1,2 - 35 вольт при токе 1,5А.

Регулируемый повышающий преобразователь на SX1308


Входное напряжение - 2 - 24 вольт, выходное - 5 - 28 вольт при токе до 2 ампер. Такие параметры достигаются применением микросхемы SX1308, работающей на высокой частоте - 1,2 МГц, отсюда и такие маленькие габариты дросселя.

Повышающий преобразователь без регулировки напряжения, предположительно на BL8530


А этот маленький модуль повышающего преобразователя предназначен для повышения напряжения в диапазоне от 0,9 до 5 вольт в 5 вольт с током до 600 мА, без возможности регулировки, потому что на выходе установлено гнездо USB. Данный модуль содержит светодиод, который загорается при входном напряжении выше 1,8...2,7 вольт (в разных источниках указана разная информация). Поэтому если модуль питается от литиевого аккумулятора и светодиод не горит, значит аккумулятор ушёл в глубокий разряд. Маркировка на чипе - E50D / E5 0D / E5oD / E5oD. Вероятно, это - BL8530 или CE8301. Из доработок - нужно проверить ёмкость входного керамического конденсатора, и если она окажется слишком малой, то заменить его. Параллельно выходу также следует добавить керамический конденсатор для сглаживания пульсаций. Установить его можно с нижней стороны платы.

Повышающий преобразователь с USB на kB3429 (HXN-Xh)


Параметры микросхемы kB3429:

корпус: SOT-23
КПД: до 96%
низкое напряжение запуска: 0.82 В
ток покоя: входное напряжение: 0.5 В - 4.4 В
выходное напряжение 2.5 В - 4.3 В (до 5В с диодом Шоттки)
низкое напряжение встроенного ключа RDS(ON): 0.35 Ом
фиксированная частота работы: 500 кГц
высокий ток работы: 1 A
защита от короткого замыкания

Маркировка микросхемы:
после 2007-3-15: HX-Xh
до 2007-3-15: XF

Преобразователь обеспечивает ток до 260 мА от 1 батарейки АА и до 600 мА от двух батареек.

Повышающий преобразователь на MT3608


Параметры микросхемы MT3608

КПД до 97%
корпус SOT23-6
выходной ток: 2 А
встроенный силовой полевик с сопротивлением 80 мОм
входное напряжение: от 2 В до 24 В
регулируемое выходное напряжение: до 28 В
фиксированная частота: 1.2 МГц
встроенное ограничение тока: до 4 A
режим автоматической импульсной модуляции на малых нагрузках

Понижающий преобразователь на MP2307


Параметры микросхемы MP2307:

КПД до 95%
корпус: 8-Pin SOIC
выходной ток: 3 А (4 А пиковый)
входное напряжение: от 4.75 В до 23 В
силовой полевик с сопротивлением 100 мОм
выходное напряжение: от 0.925 В до 20 В
программируемый мягкий запуск
для применения с выходными керамическими Low ESR конденсаторами
фиксированная частота: 340 кГц
защита от превышения тока Cycle-by-Cycle

Если ты можешь что-то добавить о личном опыте работы с преобразователями, представленными в этом обзоре, - добро пожаловать в комментарии.

Казалось бы, что еще можно написать о повышающем модуле MT3608 после статей от kirich ?
Но у меня своё маленькое применение, причем самому даже не хватило мозгов додуматься до этого: подсказал знакомый. Статья для тех, у кого в китайском мультиметре села батарея «Крона».

В первую очередь, меня привлекла низкая цена, и я как-то не смотрел на рейтинг продавца… На Али иногда, очень редко, но бывают нормальные продавцы с низким рейтингом. Для хорошего старта на рынке, нужно прилагать максимум усилий и данный продавец, имхо, это прекрасно понимает.


Заказывал на сумму не менее $2: 4 обозреваемых модуля и - заказ пришел через 16 дней (Украина, Харьков), а транзисторов оказалось не 50, а 100!
Судя по тому, что они звонятся положительным щупом у базы, это n-p-n , сопротивление база-коллектор и база-эмиттер 773Ом. Замечал раньше случаи, что первому покупателю высылают дополнительные плюшки, в этот раз повезло и мне!


Упакована посылка не без пупырки, обратный адрес почти «Къюбей»:


Итак, вернёмся к мультиметру… ВОт так он выглядит у меня:


жмут аккумуляторов! Всё это лежит на столе и почти не транспортабельно. Для нормальной его работы необходимо напряжение в районе 8-9В, ток «крайне мал» (измерять его нечем). Покупать Крону чет не хочется, за то есть много аккумуляторов и, чтобы как-то облегчить конструкцию было принято решение поместить внутрь повышающий модуль.


Светодиодов на нем нет - и это хорошо! Отпаивать жалко, замазывать чёрным термоклеем надоело.
Подключаем на вход платы питание (2 и более вольт) вращаем переменный резистор и пока еще живым мультиметром контролируем напряжение на выходе платы:

при изменении напряжения на входе, на выходе держится заданное


устанавливаем в 9-с-чем-то вольт.
Перед платой можно установить выключатель, аккумултор(ы) можно поместить внутрь корпуса, можно даже предусмотреть его зарядку с помощью платы заряда за $0.2 .

Но мне пара батареек на проводах снаружи не помешает, так более универсально.
Включил на прозвонку - пищит-заливается:

Более полный и квалифицированный обзор этого и другого похожего повышающих модулей от kirich можно прочесть по ссылке - - и лучше ту статью прочесть перед манипуляциями, описанными в этой, там есть полезные советы;)
А также можно другие обзоры этого модуля.

Планирую купить +56 Добавить в избранное Обзор понравился +51 +85

Всем привет. Хочу рассказать Вам, про повышающий модуль (Бустер) маленького размера… Подобные модули использовал, когда собирал . Потому взял еще «про запас», т.к применение в радиолюбительском хозяйстве всегда найдется, особенно где используется батарейное питание… Всем кому интересно, добро пожаловать под Кат.

Продавец на сайте дает такие характеристики:
1. Module Свойства:неизолированный модуль повышающий (BOOST) 2. Входное напряжение:1-5 В 3. Выходное напряжение:5.1 ~ 5.2 В 4. Выходной Ток:номинальная 1А ~ 1.5A (Один вход литиевая батарея) 5. эффективность Преобразования:до 96% (входное напряжение, тем выше эффективность) 6. Частота Переключения:500 КГц 7. пульсация Выходного сигнала:мв (Макс) 20 М Пропускная Способность (Вход 4 В, Выход 5.1 В 1А) 8. индикация Напряжения:СВЕТОДИОДНЫЕ фонари с нагрузкой (входное напряжение ниже, чем 2.7 В СВЕТОДИОДНЫЙ индикатор выключен) 9. Рабочая температура:промышленного класса (-40 По Цельсию до + 85цельсия) 10. повышение температуры при Полной нагрузке:30цельсия 11. Ток покоя:130uA 12. регулирование нагрузки:± 1% 13. регулирование напряжения:± 0.5% 14. динамическая скорость отклика:5% 200uS 15. защита от короткого замыкания:нет
Модуль доехал ко мне за месяц. Трек не отслеживался… Упакован был в стандартный желтый конверт с «пупыркой» внутри…
Вот реальная фотография модуля:


Модуль реально маленький, вот сравнение с другим повышающим модулем на XL6009


На микросхеме SOT23-6 имеется маркировка 31=N10 По этой маркировке поиск приводит на этот Похоже, что это именно этот Step-up DC/DC Converter RT9266
Вот принципиальная схема данного модуля (взята из Даташит):


Проверяем напряжение на выходе. Чуть больше 5В… Напряжение держит в диапазоне от 0.8В и до 4.5В (выше не ставил)






Теперь проверим максимальный ток, что способен выдавать модуль… На выход подключаем амперметр и переменный проволочный резистор… Выставляем напряжение заряженного литиевого аккумулятора - 3.9В.


При токе на выходе 200мА - потребление от аккумулятора будет 370мА


При токе в 300мА потребление от АКБ будет 610мА


При токе на выходе в 370мА - микросхема ушла в защиту… Собственно никакого 1 Ампера на выходе я не увидел… О чем, в принципе, догадывался заранее… Но для питания маломощных устройств требующих 5В от литиевого аккумулятора подойдет…

Вот собственно и всё… Выводы делайте сами.
Из плюсов:
1.) Мне понравился маленький размер модуля.
2.) На выходе особых помех осциллографом не увидел, обычные иглы…
Из минусов:
Заявленный китайцами ток в 1А не выдает…
Всем мира и добра… С наступающим Праздником Днем 1 Мая!!! Ура, товарищи!!!

Планирую купить +9 Добавить в избранное Обзор понравился +34 +55

Всем привет. Сегодня рассмотрим очередной Step Up + Step Down модуль. Отличается от своих младших собратьев возможностью регулировки тока, которая заметно расширяет варианты применения данного преобразователя. Так же используется ЖК экран, но этим уже мало кого удивишь.
Подробнее под катом.


Доставка заняла чуть больше двух недель



Характеристики

Входное напряжение: 5,5-30 В

Выходное напряжение: 0,5-30 В

Выходной ток: Долгосрочная стабильная работа в 3А, при активном охлаждении до 4А

Выходная мощность: 35 Вт натуральное охлаждение, при активном охлаждении до 50 Вт

Разрешение отображения напряжения: 0,05 В

Разрешение отображения тока: 0.005A

Эффективность преобразования: около 88%

Софт-старт: Да

Входная обратная Защита: да

Защита от обратного напряжения: Да

Защита от короткого замыкания: Да

Рабочая частота: 180 кГц

Размер: Д * Ш * В: 66*48*21 мм

Вес: 46 г

Распаковка и внешний вид.

Желтый пакет


Пенополиэтилен


Антистатический пакет


Сама плата, размеры продублирую: 66*48*21 мм


Используются довольно мощные мосфеты и


Для охлаждения которых в комплект подкинули алюминиевый радиатор


С обратной стороны из интересного LCD контроллер , контроллер , усилитель и, насколько я могу судить, контроллер


Пайка аккуратная, в комплекте есть четыре клипсы, которые приподнимают плату над столом, дабы избежать замыканий.


Конденсаторы подобраны с небольшим запасом, на 35 Вольт при максимальных 30 на выходе.

Рассмотрели модуль, пора протестировать его на практике


И да, для самых внимательных - при таком подключении мультиметра ничего страшного не произойдет, ниже поймете почему.

Тестирование.

Регулировка напряжения и тока осуществляется подстроечными резисторами, тут ничего нового и сложного нет.
Давайте разберемся с кнопочным управлением. Всего имеется две кнопки, IN/OUT и ON/OFF . Первая переключает отображение напряжение на входе или выходе, вторая включает или выключает выходное питание. Помимо этого есть еще две скрытые возможности, которые активируются при долгом зажатии.
IN/OUT - включает отображение мощности вместо силы тока


ON/OFF - настраивает триггер выходного напряжения после включения питания устройства


Довольно полезная опция, которую не так часто встретишь в бюджетном сегменте.

Мне было интересно по какому принципу работает ограничение тока, поэтому с него и начнем. У меня есть нагрузка на 35 Ватт, поэтому для начала настроил на выход 5 Вольт и 1 Ампер. Как только значение превысило данный порог, загорелся красный индикатор и напряжение начало проседать. Таким образом сработала защита и не дала превысить мощность выше 5 ватт.


Во многих модулях с защитой по току, при превышении нагрузки питание выключается полностью. Текущее поведение мне больше нравится, т.к. оно позволяет использовать данный модуль в качестве зарядного устройства.
Теория:
Задаем конечное напряжение, для лития пусть будет 4.2 Вольта, уменьшаем ток, подключаем аккумулятор и поднимаем ток, в моем случае до 750 мАч. Батарея будет потреблять явно больше, поэтому ток останется на нужном нам уровне, а напряжение просядет и будет подниматься по мере накопления заряда. Это как раз то что нам нужно.
Практика:
На создание данной гифки ушло около 5 часов времени, 1 час на запись и 4 на монтаж)


Отлично. К тому же по мере выравнивания напряжения, начал снижаться ток заряда. Прямо как в полноценном ЗУ.
Правда не обошлось без косяков. Я не сверил показатели напряжения и при 4.2 на мультметре, модуль только дошел до 4.15. Отключил аккумулятор, оказалось действительно есть расхождение в 64 мВ, что не критично, но грустно…


Поправил до нужного.


При изменении значения на 60+ мВ ток заряда упал ниже 100 мА


Минимум, что я увидел в строке амперметра, это 40 мА. До нуля ждать не стал, уже так была поздняя ночь.

Проверил заявленную защиту от обратного напряжения. При подключенном полностью заряженном аккумуляторе выключил модуль, ток разряда составил 4мА, что немного больше значения саморазряда этого же аккумулятора. Это значит, что можно не бояться за аккумуляторы при прекращении подачи основного питания, например при использовании сабжа совместно с солнечными панелями.

После зарядки сверил показания встроенного вольтметра. Расхождение есть во всем диапазоне.

Нормальный ток выдает даже на самом низком значении напряжения, правда защита не срабатывает даже при замыкании.


А вот при напряжении выше 1 Вольта, при КЗ полностью обрубается выход

Нагрузка только на 35 Ватт, так что радиатора должно было впритык хватить


Для 5 Вольт смог выжать только 3.7 А, после чего началась просадка напряжения.


После пяти минут прогрева при 35 Ваттах, температура радиатора поднялась чуть выше 40 градусов.

Ну и напоследок тестирование стабильности выставленных значений при скачках на входе.
Для этого использовал блок питания с регулируемым напряжением от 9 до 24 Вольта.
Выставил 5 Вольт на выходе, поднял нагрузку до 3 Ампер. Влияние на результат оказалось минимальным.

Итоги

Занятная модель. Совсем немного не дотягивает до максимума по заявленным характеристикам - на 2 Вольта по напряжению и около 0,3 Ампера по току, но в остальном неплохо. Нарисовать еще корпус, да добавить вентилятор, было бы вообще замечательно.

Я показал функционал и нюансы работы устройства. Нужно оно или нет и стоит ли своих денег, решать вам.
Если где-то ошибся или забыл что-то проверить - пишите об этом в комментариях, исправлю. Всем добра =)

P.S. Может кто подскажет куда лезть, чтобы поправить погрешность встроенного вольтметра?

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +54 Добавить в избранное Обзор понравился +77 +119

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

U ист *I ист = U потр *I потр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере .

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Вытравил, спаял…

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Понравилась статья? Поделитесь ей